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Abstract 

A  quantum  device  simulating  human  decision  making process is 
introduced. It consists of  quantum  recurrent  nets  generating  stochastic 
processes  which  represent  the  motor  dynamics,  and of classical  neural  nets 
describing  evolution of probabilities of these  processes  which  represent  the 
mental dynamics. The  autonomy  of  the  decision  making process is 
achieved  by  a  feedback  from  mental  to  motor  dynamics  which  changes  the 
stochastic  matrix  based  upon  the  probability distributions. This feedback 
replaces  an  unavailable  external  information  by  an  internal  knowledgebase 
stored  in  the  mental  model  in  the  form  of  probability distributions. As  a 
result, the  coupled  motor-mental  dynamics is described  by  a  nonlinear 
version of Markov  chains  which  can  decrease  entropy  without an  external 
source of information.  Applications  to  common sense based  decisions  are 
discussed. 

1. Introduction 

A  human  common  sense  has  always  been  a  mystery  for physicists, and  an  obstacle 
for artificial  intelligence.  It  was  well  understood  that  human  behavior,  and  in  particular,  the 
decision  making  process,  is  governed by feedbacks  from  the  external world, and  this  part 
of  the problem  was  successfully  simulated  in  the  most  sophisticated  way  by  control 
systems. However, in  addition to that, when  the  external  world  does  not  provide  sufficient 
information, a  human  turns for “advise”  to  his  experience,  and  that is associated  with  a 
common sense. In  this paper, by  common  sense  we  will  understand  a  feedback from the 
self-image  (a  concept  adapted  from psychology), and  based  upon that, we  will propose a 
physical  model of common  sense  in  connection  with  the  decision  making  process. 

A  decision  making  process  can be  modeled  by a  time  evolution of a  vector n whose 
components ni ( i  = 1 ,2 . .  . N )  represent  a  probability  distribution  over N different choices. 
The  evolution of this  vector  can  be  written  in  the  form of a  Markov  chain: 

N N 

n,(t+ 7) = Zi( t )P,  z n i  = 1, zpij = 1, 0 5 n, 21, 0 I pij < 1 (1) 
i = l  , j  = I 

where P is the  transition  matrix  representing  a  decision  making policy. If P = Cunst, the 
process (1) approaches  some  final  distribution 6’ regardless of  the  initial  state no. In 
particular, in  the case of doubly-stochastic  transition  matrix, i.e., when 



N N 

,=I i=l 

all  the  final  choices  become  equally  probable: 

i.e., the  system  approaches  its  thermodynamics  limit  which  is  characterized  by  the 
maximum entropy. When  the  external  world  is changing, such a rigid  behavior is 
unsatisfactory,  and  the  matrix P has  to  be  changed  accordingly, i.e., P = P(t ) .  Obviously 
this  change  can  be  implemented  only if  the  external  information  is  available,  and  there  are 
certain sets of rules for correct responses. However, in  real  world situations, the  number 
of rules grows exponentially  with  the  dimensionalities  of  external factors, and therefore, 
any  man-made  device fails to  implement  such  rules  in full. 

The main departure from this  strategy  can  be  observed  in  human  approach  to 
decision  making process. Indeed, faced  with  an  uncertainty, a human  uses a “common 
sense”  approach  based  upon  his  previous  experience  and  knowledge  in  the  form of  certain 
invariants or patterns  of  behavior  which  are  suitable for the  whole  class  of  similar 
situations. Such an  ability  follows  from  the  fact  that a human possesses a self-image, and 
interacts  with it. This  concept  which  is  widely  exploited  in  psychology  has  been known as 
far back as to  ancient philosophers, but so far  its  mathematical  formalization has never 
been  linked  to  the  decision  making  model (1). 

First we  will  start  with  an  abstract  mathematical  question:  can  the system ( 1 )  
change its evolution, and  consequently, its limit  distribution,  without  any  external “forces”? 
The formal  answer is definitely  positive.  Indeed, if  the  transition  matrix  depends  upon  the 
current  probability  distribution 

P = P(n) (4) 

then  the  evolution (1) becomes  nonlinear,  and  it may  have  many  different  scenarios 
depending  upon  the  initial  state no. In  particular  case (2), it  can  “overcome”  the  second 
law  of  thermodynamics  decreasing  its  final  entropy  by  usin  only  the  “internal” resources. 
The  last  conclusion  illuminates  the  Schrodinger  statement  that  ‘life  is  to  create order in 
the disordered environment  against  the  second  law of thermodynamics.”  Obviously  this 
statement  cannot  be  taken  literally - as  will  be shown below, eq. (1) subject to the 
condition (4) describes  the  system  which is not isolated, and therefore, the  result  stated 
above  does  not  violate  the  second  law of thermodynamics. In order to discuss the  physical 
meaning of the  condition (4), let  us  turn  to Eq. ( 1 )  and  introduce  the  underlying  stochastic 
process. The latter  can  be  simulated by a quantum  device  represented by quantum  recurrent 
nets  (QRN) 13] , and  we  will  start  with a brief  description  of  that  device. 

The  simplest QRN is  described  by  the  following  set of difference  equations  with 
constant  time  delay z 

Ki 

i = 1,2 ... N 

where a ,  is the  input  to  the  network  at  time t, uij is a unitary  operator  defined  by  the 
corresponding  Hamiltonian of the  quantum  system,  and 0, is a measurement  operator  (in 
the  computational basis) that  has  the  effect  of  projecting  the  evolved  state  into  one  of  the 
eigenvectors of 0,. The  curly  brackets  are  intended  to  emphasize  that 0, is to be  taken as a 



measurement  operation  with  the  effect  similar to those of a sigmoid  function  in  classical 
neural networks. Obviously, the  outputs a,(t + z) are  random  because of  the probabilistic 
nature  of  quantum  measurements. As shown  in [319 these  outputs  form a Markovian 
stochastic  process  with  the  probabilities  evolving  according to the  chain (1) and 

is  the  NxN  doubly-stochastic  matrix  which  is  uniquely  defined  by  the  unitary  matrix U .  
Each  element  of  this  matrix  represents  the  probability  that  the ith eigenvector as an input 
produces jth eigenvector  as  an  output: 

{oo 0:'o o]+(, Of0 0 )  

In a special case when 
pii > 0; i, j = 1,2, ... N 

the  Markov  process is ergodic, i.e., the  solution to Eq. (1) approaches  an attractor (3) 

which is unique  and  it  does  not  depend  upon  the  initial  value no at t=O. Only  this case will 
be considered in  this  paper.  Thus,  Eq. ( 5 )  describes  the  evolution of the  vector 

N 

{a,  ... a,,}=<ql, C a , ;  = I  
.I= I 

representing a quantum  state  in a Hilbert space, and  all  the  components (ai,uii) are  to  be 
actually  implemented . This evolution is irreversible,  nonlinear  and  nondeterministic 
because  it  includes  measurement  operations. 

On the  other  hand,  the  vector 

(n,,n, . . x n )  = n, cnj = 1, n, > 0, (9) 
j = l  

as  well  as  the  stochastic  matrix pii exist  only  in an  abstract  Euclidean  space:  they  never 
appear  explicitly  in  physical  space.  The  evolution (1) is  also  irreversible,  but  unlike ( 3 ,  it 
is  linear  and  deterministic. 

So far we  have  simulated  the  case P = Const. 
In order to control P, let  us  assume  that  the  result  of  the  measurement, i.e., a unit 

vector a,,, ( t )  = 00.. .010.. .O is  combined  with  an  arbitrary  complex  (interference) 

vector. 
i 1 1  

If the  interference  state  vector  is 



and CJ is a measurement  operator  in  the  computational basis, then I v/( t + 7)) , the  recurrent 
state  re-entering  the circuit, must  take  one of the  forms: 

with  re-normalization  factors: 

It should be  emphasized  that  the  states (1 1) are  first  calculated  and  then  prepared  as  new 
quantum inputs. 

The  transition  probability  matrix, pjj for this  process  is  given by  examining  how  each  of 
the  recurrent states, I &). . - 1  @N-l)  evolve  under  the  action of U: 

... 

... 

ICJ[ 



where 
N - l   N - I  

t=O 1=0 

Thus, now  the  structure of  the  transition  probability  matrix pi; can  be  controlled  by  the 
interference  vector (lo), and P = P ( t ) .  

Let us  now  implement  the  internal  feedback (4). For  that purpose, assume  that  the 
components of  the  interference  vector (10) are  defined  by  the  components ni of  the 
probability  vector by setting: 

and rewriting Eqs. (12) - (16)  accordingly.  Then 

However,  the  simplicity of this  mathematical  operation  is  illusive. Indeed, as  pointed  out 
above, the  probability  vector n is  not  simulated  by  the  QRN  explicitly:  it  has  to  be 
reconstructed by a statistical  analysis of  the  ensemble  of  solutions  to Eq. (5). In order to 
avoid that, one  can  simulate  the  evolution  of  the  probability vector, i.e., Eq. (1) by a 
classical  neural  network  which  can  be  presented,  for  instance,  in  the  form 

7Ti(t+z)=S Cw$r,(t)  
L l r l  1 

where S is  the  sigmoid function, and wjk = Const are  the  synaptic  weights. 
Now Eqs. (5) and (19) are coupled  via  the  feedbacks (6) and (17). 
From  the  mathematical viewpoint, this  system  can  be  compared  with  the  Langevin 

equation  which  is  coupled  with the corresponding  Fokker-Planck  equation such that  the 
stochastic  force  is  fully  defined  by  the  current  probability distributions, while  the  diffusion 
coefficient  is  fully  defined by  the  stochastic  force.[41 

From the  physical viewpoint, Eqs. (5) and (19) represent  two  different  physical 
systems  (quantum  and  classical)  which  interact  via  the  feedbacks (4) and (6): the  transition 
probability  matrix P is defined  by  the  unitary  matrix U of  the  QRN  according  to Eq. (6), 
while  the  input  interference  vector  to  the  QRN  is  defined  by  the  feedback (17). Using the 
Feynmann  terminology , Eq. (5) simulates  probabilities,  while Eq. (19) manipulates  by 
them. 

Finally, from  the  cognitive  viewpoint, Eqs. (5) and (19) represent  two  different 
aspects  of  the  same  subject:  the  decision  maker.  Eq. (5) simulates  his  real-time actions, 
i.e., his  motor  dynamics,  while Eq. (19)  describes  evolution of self-image in  terms of such 
invariants  as  expectation,  variance,  entropy  (information),  and  that  can  be  associated  with 
the  mental  dynamics. 

Thus, as a result of  interaction  with  his  own  image  and  without  any  “external” 
enforcement,  the  decision  maker  can  depart  from  the  thermodynamical  limit (3) of his 
performance  “against  the  second law.” Obviously,  from  the  physical viewpoint, the 
enforcement  in  the form of  the  feedback (17) is external  since  the  image (19) represents a 
different  physical system. In  other  words,  such a “free  will” effort is not  in a disagreement 
with  the  second  law of thermodynamics. 

Eqs. (5) and (19) illuminate  another  remarkable  property  of  human  activity:  the 
ability to predict future. Indeed, Eq. (19)  depends  only  upon  the  prescribed  unitary  matrix 



U, but it does not  depend  upon  the  evolution of  the  vector a,. Therefore, Eq. (19) can  be 
run  faster  than  real  time; as a result of that, future  probability  distributions  as  well as its 
invariants  can  be  predicted  and  compared  with  the  objective.  Based  upon  this comparison, 
the  feedback (17) can  be  changed  if  needed. 

Actually  such  interaction  with  self-image  simulates  “common  sense”  which  replaces 
an  unavailable  external  source of information  and  allows  one  to  make  decisions  based  upon 
his previous experience. 

Formally  the  knowledge  base  is  represented  by  the  synaptic  weights wjk of Eq. 
(19), and  it consists of  two parts. The  first  part  includes  personal  experience  and  habits 
(risk prone, risk aversion, etc.). The second  part  depends  upon  the objective formulated  in 
terms  of  probability  invariants  (certain  expectation  with  minimal  variance, or maximum 
information, etc.). The  dependence  upon  the  objective  may  include  real-time  adjustment  of 
synaptic  weights wV in  the  form  of  learning  (adapted  from  theory  of  neural networks). As 
soon as the  synaptic  weights  are  determined,  the  common sense simulator  will  follow  the 
optimal  strategy  regardless of unexpected  changes  in  the  external  world. 

It  should  be  noticed  that  the  advantage of  the quantum  implementation  is  not  only  in 
simulation  of  true randomness, but  also  in  exponential  increase  of  information  capacity. 
Indeed,  combining  the  direct  product  decomposability  and  entanglement,,  one  can  represent 
the  unitary  matrix  in Eq. (5) as  follows: 

Here  the  number  of  independent  components  is: 

q = 4nm (21) 

while  the  dimensionality 

In Eq. (22), N and q are  associated  with  the  Shannon  and  the  algorithmic  complexity, 
respectively; therefore, the  exponential  Shannon  complexity is achieved  by  linear 
resources. 

Further compression of Shannon  information  can  be  obtained  by  applying  the 
- measurement architecture [31 when  each  step of  the quantum  evolution  is  repeated  and 

measured ltimes, and  during a reset  operation  the  results of  all  the measurements  are 
combined  with  the  previous state. As shown in [31, such an  architecture provides the 
double-exponential  Shannon  complexity: 

The advantage of the  quantum  compressions  (22)  or  (23)  can  be  appreciated  in  view 
of  the  fact  that  the  efficiency of  an  alternative  device - the  pseudorandom  number  generator 
- rapidly  decreases  with  the  growth of the  dimensionality of random  vectors. 

Finally, one  should  notice  that  QRN  provides  the  simplest  physical  simulation  of 
the four constraints  in Eq. (1). However, even  if  QRN is  replaced  by a random  number 
generator,  the  quantum  formalism  should  be  preserved  since  it  is  the  best  mathematical  tool 
for implementation of these  constraints. 

2. Spontaneious self-orpanization 



We  will  start  the  analysis of  the  motor-mental dynamics, i.e., of Eqs. ( 5 )  and (19) 
with  the  effect  of a spontaneous  self-organization  when  the  system  departs  from  the  state of 
the  thermodynamics  limit  and  approches a deterministic  state  without  any  external forces. 
For  that  purpose  suppose  that  the  selected  unitary  matrix  in  Eq. (5) is 

u=-( 1 1 -1 ] 
1 / 2 1  1 

Then  the  corresponding  transition  probability  matrix  in  Eq. (l), according  to  Eq. (6) will  be 
doubly-stochastic: 

p = ( ;  ;] 
1 

and  the  stochastic  process (1) is  already  in its thermodynamics  limit (3), i.e., n, = n2 = - 
2 

deterministic  state 
Let us assume  that  the  objective  of  the  decision-maker  is  to  approach  the 

without  help  from outside. In  order  to do that, he  should  turn  to  his experience in  the  form 
of the feedback (17). If  he chooses  this  feedback  in  the  form: 

u = (ul,u2), a, = -2n1, u2 = I 

then, according to Eqs. (1 1-16),  the new transition  probability 

(X, + (1- 
p21= 2n; + 2 ’ 

p22 = 2n; + 2 

(27) 

matrix pli will  be: 

Hence,  the  evolution of  the  probability nl now can  be  presented  as: 

in  which p , ,  and p22 are substituted from Eqs. (28). 
It is easily  verifiable  that 

n,”=l, n;=o 

i.e.,  the  objective is achieved  due  to  the  “internal”  feedback (27). 

3. Attraction  to  common sense based strateyies. 
Classical  artificial  intelligence  as  well  as  artificial  neural networks are  effective  in a 

deterministic  and  repetitive world, but  faced  with  uncertainties  and  unpredictabilities,  both 





P =  
N 

0 < Z i  < I ,  c7ri = I  
i= 1 

where  the  vector x = (xl,. .  .xN)belongs to  the  family of the  vectors  in Eq. (35). 

Indeed,  then  any  arbitrary  probability  vector 

x = ( X I , X 2 ,  ... X N ) ,  C X i  = 1 (37) 

is mapped  onto  the  vector 7~ = (x,,. . . x N )  in one step. 

Let us  assume  that  the  vector x = (xl,.. . x N )  is  representable as a  direct  product  of 
n two-dimdensional  vectors. 

( x I , x 2 . . . x N ) + ( n I  1-x1)@ ..,@(xn, l - x n )  (38) 

n = &og2N (3  9) 

Obviously  this  assumption  imposes  constraints  upon  the  components of the  vector x ,  and 
as  a result, this  vector  can  be  defined  only by &og,N (out of N) independent  parameters 

i= 1,2,...n . 

Now Eq. (36) reduces to 

where 

The  next step in  the  implementation of the  mapping (33) is to express the 
components  of  the  matrix (40) via  the  components of the  unitary  operator Uij (see Eq. (5)) 
and  the interference vector (10). For  that  purpose,  let  us  choose Uj, and a’ as follows: 

U =  1 I 0 ... 0 
0 1 * . *  0 
. . . . . . . . . . . . 
0 ... 0 I 

= (  0 1   1 0  I@(’ 0 1  ”)@...@[’ (41) 
0 1  



a’ = (aly%(l) + iP,(l)) @ *. * @ (““’a,(n) + @ l ( n ) )  

Then, according to Eqs. (1 1)-( 16), 

However,  the  components of  the  interference  vector, ak,ak(l) and &(,) cannot  be  chosen 
independently  since  they  should  explore  the  equality (43) as  well  as  the  conditions: 

Simple  algebra  leads  to  the  following  constraints  imposed  upon  the  interference  vector: 

a, > -1, k = 1,2, ... n (45) 

Now the components x, in Eq. (43) can  be  expressed  via  the  only  one  component of the 
interference  vector: 

It  is  easily  verifiable  that it, is a sigmoid  function of a, : 

and  that  property  will  be  exploited  later. 
The  final  step  is to implement  the  actual  association  between  the  patterns  in  the 

mapping (33), i.e., to find  the  appropriate  dependence  between  the  components x, of the 

matrix (40) and  the  components of  the  pattern &(i) .  Since ?rk are  uniquely  defined  by a, 
(see Eqs. (48)), we  will  start  with  representing a, as  linear  combinations  of  the 

components of the  initial  patterns $’) in  the  mappint (33) for  each j‘” association: 

N 

u ~ ’ = C w , ~ ; ( . ’ ) , j = 1 , 2  ... m; k=1,2  ,... n 
i= 1 



. 

where wik are constant  weights  to  be found, m is  the  number of associations in Eq. (33), N 

and n are  the  dimensionalities  of  the  input  pattern 8 i )  and  the output  pattern d ' ) ,  
respectively. 

Eq. (50)  can  be  written  in  the  matrix  form 

and therefore, the  matrix W,, of  the weights  can  be  explicitely expressed via  the  matrix 
A,, , i.e., via the  components of the  interference  vector a t ) :  

Eq. (52) presents  the exact solution,  while Eq. (53) gives a minimum  norm  approximateion 
for the case when  the  number  of  association  is  larger  than  the  dimensionality of the  input 

patterns W . 

matrix (38) by means of Eq. (48): 
Since a:) can  be  expressed via  the  probabilities nf)  of  the transition  probability 

(one  can choose either of two values), the  problem  is  solved  in a closed  analytical form. 
Indeed, given  the  associations (33), one finds the  corresponding a t )  by Eqs. (54), and 

then  the  weights wij depend  upon all the  values of  the  input  patterns Zk(')  (via  the  matrix 

n)  and  the  output  patterns x:) (via  the  matrix A). 
As soon as  the  weights wij are found, Eq. (19) can  be  represented  in  the  following 

form: 

where x; = ni(t + ..), n; = n(t = 0) (56) 

and the sigmoid function S is defined by Eq. (49). 

Eq. (55) has a form of a perceptron for hetero-associative  memory.  Exploiting this formal 
analogy,  one  can  conclude  that any  input  pattern no which  is  sufficiently  close  to a pattern 
d i )  from the  left  of Eq. (33) will  recall  the  output  pattern  which  is  close  to  the 

corresponding associative  pattern #') from  the  right  of Eq. (33). Moreover, due to  the 
contracting property of the  sigmoid  function S in Eq. (55), the  distance  between  the  output 



patterns  will  be  smaller  than  between  the  input ones. In  particular,  several  different  inputs 
can  be  mapped  onto  the  same  output,  and  that  can  be  interpreted  as a classification  problem. 

However, from  the  cognitive  viewpoint, Eq. (55) is fundamentally  different  from 
the  perceptron  since  it  not  only  manipulates  with  the  patters of probabilities,  but  it also 
simulates them  via  the  QRN.  Indeed,  Eqs. (50) defines  the  interference  vector a' (see Eqs. 
(42))  which control the  unitary  evolution of  QRN (see Eqs. (5) and Eq. (41)) in such a way 
that  the  generated  stochastic  process  has  exactly  the  same  probability  distribution  as 
prescribed  by  the  probability  pattern f manipulated by Eq. (55). 

Thus we have  introduced a new  dynamical  paradigm  in  the form of coupled  motor 
and  mental  dynamics  which  is  represented by a quantum  generator  of  stochastic processes 
controlled  by  nonlinear  Markov chains. Based  upon  this  paradigm, a quantum  decision- 
maker has been proposed. New  dynamical  phenomena,  namely spontaneous self- 
organization,  and  attraction  to  common  sense  strategies  have  been  discussed. 
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